238 research outputs found

    Directional Sensitivity of Echolocation System in Bats Producing Frequency-Modulated Signals

    Get PDF
    1. Radiation patterns of the 55, 75 and 95 kHz components in frequency-modulated sounds emitted by the grey bat (Myotis grisescens) were studied. FM sounds similar to species-specific orientation sounds were elicited by electrical stimuli applied to the midbrain while the head of the animal was immobilized by a nail cemented to its skull. The main beam was emitted 5-10° downward from the eye-nostril line. The radiation angle at one half of maximum amplitude was 38° lateral, 18° up and 50° down at 55 kHz, 34° lateral, 8° up and 32° down at 75 kHz, and 30° lateral, 5° up and 25° down at 95 kHz. At 95 kHz, two prominent side lobes were present. 2. The directional sensitivity of the auditory system (DSA) measured in terms of the potential evoked in the lateral lemniscus was studied with the grey bat (M. grisescens) and the little brown bat (M. lucifugus). The maximally sensitive direction moved toward the median plane with the increase in frequency from 35-95 kHz. The slope of the DSA curve increased from 0.3-0.6 dB/degree with frequency. 3. The directional sensitivity of the echolocation system (DSE) was calculated using both the DSA curve and the radiation pattern of the emitted sound. The maximally sensitive direction of the echolocation system was 15° lateral to the median plane at 55kHz and 2.5° lateral at 95 kHz. The slope of the DSE curve increased from o.6 to 1.0 dB/degree with frequency. Thus, the higher the frequency of sound, the sharper was the directional sensitivity of the echolocation system. 4. The interaural pressure difference (IPD), which appeared to be the essential cue for echolocation in Myotis, changed linearly with the azimuth angle from 0-30° lateral regardless of the frequency of sound, at respective rates of 0.4, 0.7, 0.3 and 0.4 dB/degree for 35, 55, 75 and 95 kHz sounds. Beyond 30°, the change in IPD was quite different depending on frequency. For 75 and 95 kHz sounds, the IPD stayed nearly the same between 30° and 90°. Thus, the 75-95 kHz components in FM orientation sounds were not superior to the 35 and 55 kHz components in terms of the IPD cue for echolocation. 5. Assuming the just-detectable IPD and ITD to be 0.5 dB and 5µsec respectively, as in man, the just-detectable azimuth difference of Myotis around the median plane would be 0.7-1.7° with the IPD cue and 11° with the ITD cue

    Strong suppression of superconductivity by divalent Ytterbium Kondo-holes in CeCoIn_5

    Full text link
    To study the nature of partially substituted Yb-ions in a Ce-based Kondo lattice, we fabricated high quality Ce_{1-x}Yb_xCoIn_5 epitaxial thin films using molecular beam epitaxy. We find that the Yb-substitution leads to a linear decrease of the unit cell volume, indicating that Yb-ions are divalent forming Kondo-holes in Ce_{1-x}Yb_xCoIn_5, and leads to a strong suppression of the superconductivity and Kondo coherence. These results, combined with the measurements of Hall effect, indicate that Yb-ions act as nonmagnetic impurity scatters in the coherent Kondo lattice without serious suppression of the antiferromagnetic fluctuations. These are in stark contrast to previous studies performed using bulk single crystals, which claim the importance of valence fluctuations of Yb-ions. The present work also highlights the suitability of epitaxial films in the study of the impurity effect on the Kondo lattice.Comment: 5 pages, 4 figure

    Tuning of magnetic quantum criticality in artificial Kondo superlattice CeRhIn5/YbRhIn5

    Get PDF
    The effects of reduced dimensions and the interfaces on antiferromagnetic quantum criticality are studied in epitaxial Kondo superlattices, with alternating nn layers of heavy-fermion antiferromagnet CeRhIn5_5 and 7 layers of normal metal YbRhIn5_5. As nn is reduced, the Kondo coherence temperature is suppressed due to the reduction of effective Kondo screening. The N\'{e}el temperature is gradually suppressed as nn decreases and the quasiparticle mass is strongly enhanced, implying dimensional control toward quantum criticality. Magnetotransport measurements reveal that a quantum critical point is reached for n=3n=3 superlattice by applying small magnetic fields. Remarkably, the anisotropy of the quantum critical field is opposite to the expectations from the magnetic susceptibility in bulk CeRhIn5_5, suggesting that the Rashba spin-orbit interaction arising from the inversion symmetry breaking at the interface plays a key role for tuning the quantum criticality in the two-dimensional Kondo lattice.Comment: Main text: 5 pages, 4 figures; Supplemental material:6 pages, 3 figures. Accepted for publication in Physical Review Letter

    Controllable Rashba spin-orbit interaction in artificially engineered superlattices involving the heavy-fermion superconductor CeCoIn5

    Get PDF
    By using a molecular beam epitaxy technique, we fabricate a new type of superconducting superlattices with controlled atomic layer thicknesses of alternating blocks between heavy fermion superconductor CeCoIn_5, which exhibits a strong Pauli pair-breaking effect, and nonmagnetic metal YbCoIn_5. The introduction of the thickness modulation of YbCoIn_5 block layers breaks the inversion symmetry centered at the superconducting block of CeCoIn_5. This configuration leads to dramatic changes in the temperature and angular dependence of the upper critical field, which can be understood by considering the effect of the Rashba spin-orbit interaction arising from the inversion symmetry breaking and the associated weakening of the Pauli pair-breaking effect. Since the degree of thickness modulation is a design feature of this type of superlattices, the Rashba interaction and the nature of pair-breaking are largely tunable in these modulated superlattices with strong spin-orbit coupling.Comment: 5 pages, 4 figures, to be published in Phys. Rev. Let

    Echolocating bats emit a highly directional sonar sound beam in the field

    Get PDF
    Bats use echolocation or biosonar to navigate and find prey at night. They emit short ultrasonic calls and listen for reflected echoes. The beam width of the calls is central to the function of the sonar, but directionality of echolocation calls has never been measured from bats flying in the wild. We used a microphone array to record sounds and determine horizontal directionality for echolocation calls of the trawling Daubenton's bat, Myotis daubentonii, flying over a pond in its natural habitat. Myotis daubentonii emitted highly directional calls in the field. Directionality increased with frequency. At 40 kHz half-amplitude angle was 25°, decreasing to 14° at 75 kHz. In the laboratory, M. daubentonii emitted less intense and less directional calls. At 55 kHz half-amplitude angle was 40° in the laboratory versus 20° in the field. The relationship between frequency and directionality can be explained by the simple piston model. The model also suggests that the increase in the emitted intensity in the field is caused by the increased directionality, focusing sound energy in the forward direction. The bat may increase directionality by opening the mouth wider to emit a louder, narrower beam in the wild

    Lower Critical Fields of Superconducting PrFeAsO1y_{1-y} Single Crystals

    Full text link
    We have studied the lower critical fields H_{c1} of superconducting iron oxipnictide PrFeAsO_{1-y} single crystals for H parallel and perpendicular to the ab-planes. Measurements of the local magnetic induction at positions straddling the sample edge by using a miniature Hall-sensor array clearly resolve the first flux penetration from the Meissner state. The temperature dependence of H_{c1} for H || c is well scaled by the in-plane penetration depth without showing any unusual behavior, in contrast to previous reports. The anisotropy of penetration lengths at low temperatures is estimated to be ~ 2.5, which is much smaller than the anisotropy of the coherence lengths. This is indicative of multiband superconductivity in this system, in which the active band for superconductivity is more anisotropic. We also point out that the local induction measured at a position near the center of the crystal, which has been used in a number of reports for the determination of H_{c1}, might seriously overestimate the obtained H_{c1}-value.Comment: 7 pages, 7 figures, accepted for publication in Phys. Rev.
    corecore